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STRAIN CHARACTERISTICS OF MATERIALS WITH DEFECTS

UDC 539.375A. I. Kozinkina

For uniaxial tension of St. 3 steel, the stiffness-matrix components are determined using a two-
dimensional plastic solid model and taking into account the formation and development of anisotropic
damage. In order to characterize defect formation, a vector damage criterion is introduced, mic-
trostructural analysis data are used, and the destruction point is established. Estimates of the elastic
moduli and experimental data indicate that the model provides a qualitative description of the real
deformation and failure processes of deforming and destruction and can be used to determine the life
of materials.

Key words: plastic solid, slip systems, elastic moduli, anisotropy, defects.

To construct strength theory and describe the fracture of solids, it is first necessary to identify the real
degree of imperfection and take into account its effect on the strain characteristics of materials. It is clear that this
inevitably complicates the present models of mechanics, which should be based on experimental data and physical
mechanisms of the fracture process.

In both the analytical apparatus of the theory of deformable solids and engineering developments, the main
parameters are elastic constants or elastic moduli. Experimental data have shown that these quantities are struc-
turally sensitive characteristics that depend not only on the chemical composition but also on the imperfection and
isotropy of the material. In particular, the dependence of the elastic modulus on damage underlies one of the meth-
ods for determining the imperfection of solids under the assumption that the elastic modulus of a damaged medium
is equal to a certain effective modulus of the undamaged continuum and the presence of defects is characterized by
the scalar parameter D [1]. However, under loading, defects with preferential orientation develop and the initially
isotropic solid becomes anisotropic with orthotropic symmetry [2].

The present paper deals with determining the elastic characteristics of plastically deformed materials taking
into account the formation and development of anisotropic damage. The problem is solved using the Batdorf–
Budiansky two-dimensional model of a plastic solid [3] and experimental data on the elastic modulus for unloading.

1. We consider the case of uniaxial loading of a plastic solid taking into account the formation and growth
of microcracks. For definiteness, we assume that the growth of microcracks is only due to the Stroh plastic mecha-
nism [4] (this process was studied analytically in [5, 6]) and that the solid, as in [3], consists of an aggregate of grains
which have a single slip system determined by the mutually orthogonal directions n and λ. A shear stress τnλ acts
in the slip system. If the grains are large in number, among them there are grains for which the normal to the
slip plane is inside a solid angle dΩ with axis n and the slip direction is inside an angle dλ with bisectrix λ. Thus,
the number of grains that have the slip system nλ is proportional to dΩ dλ. From this, for the deformation of the
continual medium and the two-dimensional solid model we assume that:

— The plastic strain of the solid is the sum of the irreversible shears in the slip planes nλ that are perpen-
dicular to the plane of load application xy;

— Irreversible shears occur only in those planes in which there is at least one direction along which τnλ

exceeds the critical constant value and, in addition, is larger than its previous values;
— The value of the plastic shear γnλ depends only on τnλ;
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— The slip systems do not interact with each other and the total strain is summed over all directions;
— When the stress–strain state reaches the condition of microcrack initiation, which reduces to satisfying

the condition τnλ = τs, k0 defects of size l0 form in the slip system nλ, which represent a periodic system of slits
with distance a between the centers of neighboring microcracks;

— During further deformation, the remaining intact part of the slip system is deformed by a shear whose
value depends only on the effective shear stress;

— The variation in the microcrack size is determined by the condition of microcrack growth, which is written
as [7]

lk − l0k
a

= B(γk − γ0
k) sinh

σ0

σi
, (1)

where lk is the microcrack length in the kth slip system, γk is the shear plastic strain in the kth slip system, γ0
k is

the shear plastic strain that leads to generation of microcracks of size l0k in the kth slip system, σ0 is the spherical
part of the stress tensor, σi is the strain intensity, and B is a constant,

— For unloading before the moment of microcrack formation, we have an elastic isotropic solid with elastic
constants E, ν, and G = E/(2 + 2ν) in the coordinate system ρq attached to the proportional strain path. In this
case, the stress–strain state of an orthotropic medium with damage can be described by a potential of quadratic
form [8] whose variables are the strain-tensor components εj and the damage-vector components ωj :
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Here ki are the decomposition coefficients and P is a polynomial quadratic in ωj .
In the case of microcrack formation in the slip system attached to the loading direction, microcracks form

in the direction q and the coordinates of the vector ω are (0, ω2). Hence, in a coordinate system attached to the
kth slip plane in which axis 1 is directed along the slip axis and axis 2 along the normal to the slip axis, using (2),
we obtain the following expressions for the elastic moduli:

C11 = C0
11 + 2k4ω

2
2 , C12 = C21 = C0

12 + k14ω
2
2 , C22 = C0

22 + 2k8ω
2
2 ,

C66 = C0
66 + 2k12ω

2
2 , C16 = C61 = 0, C26 = C62 = 0,

(3)

where C0
ij are the elastic constants of the undamaged slip systems:

C0
11 = C0

22 = E/(1− ν2), C0
66 = G = E/(2 + 2ν), C0

12 = νE/(1− ν2). (4)

In the coordinate system attached to the proportional loading path and the unit bases ρ and q, the elastic
constants C̄k

ij , according to the transformation rules [9], are defined by

C̄k
ij = ak

ijlU
k
l , l = 1, 2, 3, 4, (5)

where

Uk
1 = (1/8)(3C11 + 3C22 + 2C12 + 4C66), Uk

2 = (1/2)(C11 − C22),

Uk
3 = (1/8)(C11 + C22 − 2C12 − 4C66), Uk

4 = (1/8)(C11 + C22 + 6C12 − 4C66),

ak
ijl are orientation coefficients.

Using (3), we obtain

Uk
l = U0k

l + Ak
l ω2

2 , (6)

where Ak
l are expressed in terms of the coefficients ki of expansion of the strain potential (2):

A1 = (1/4)(3k4 + 3k8 + 4k12 + k14), A2 = k4 − k8,

A3 = (1/4)(k4 + k8 − 4k12 − k14), A4 = (1/4)(k4 + k8 − 4k12 + 3k14).
(7)

The stress tensor components in the solid are obtained by summation over all slip planes, namely, by integration
over the angle λ from −π/2 to π/2 taking into account (5) and (6):
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The first integral in (8) gives the stiffness matrix of linear isotropic elastic theory, and in the second integral the
integrand is nonzero for λ ∈ [−ϕ, ϕ] because in the range −π + ϕ < λ < π − ϕ, where the angle ϕ is determined
from the condition cos ϕ = τs/τ [10], the material is undamaged and ω2 = 0 in this case. The constants Al are
factored outside the integral sign and ωk2

2 is a positive symmetric function of λ with respect to the value λ = 0 for
proportional loading. In the kth slip system, ω2 is a function of the microcrack length l, which, in turn, depends
on the shear plastic strain γp in this slip system and is determined by the microcrack growth conditions. Then,
assuming that ωk2

2 = lk/a, taking into account that γ = e cos λ/
√

2 and σ0/σi = const, and using the crack growth
condition (1), we obtain

σi = [C0
ij ]εj + Al

1
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1
π
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εj dλ = [C0
ij ]εj + [Zij ]εj ,

where e is the strain intensity, e0 is the strain intensity for crack initiation, B1 is a constant, 1/π is the normalization
coefficient, and the matrix has the form

[Zij ] =
1
π

(
[Nij ]B1(e− e0) + [Mij ]

l0k
a

)
. (9)

Accordingly, the matrices

[Nij ] = Al

ϕ∫
−ϕ

ak
ijl cos λ dλ, [Mij ] = Al

ϕ∫
−ϕ

ak
ijl dλ

are easily calculated taking into account the expressions for Al and ak
ijl:

N11 = 2A1 sinϕ + A2(sinϕ + (1/3) sin 3ϕ) + A3((1/3) sin 3ϕ + (1/5) sin 5ϕ),

M11 = 2A1ϕ + A2 sin 2ϕ + (1/2)A3 sin 4ϕ,

N22 = 2A1 sinϕ−A2(sinϕ + (1/3) sin 3ϕ) + A3((1/3) sin 3ϕ + (1/5) sin 5ϕ),

M22 = 2A1ϕ−A2 sin 2ϕ + (1/3)A3 sin 4ϕ,
(10)

N12 = 2A4 sinϕ−A3((1/3) sin 3ϕ + (1/5) sin 5ϕ), M12 = 2A4ϕ− (1/2)A3 sin 4ϕ,

N66 = A1 sinϕ−A3((1/3) sin 3ϕ + (1/5) sin 5ϕ)−A4 sinϕ, M66 = A1ϕ− (1/2)A3 sin 4ϕ−A4ϕ.

It is obvious that the damaged medium is anisotropic and its stiffness is determined by the coefficients Al.
2. Let us estimate the coefficients ki using (3) for materials whose plastic deformation was studied by

microstructural analysis in [6, 11]. We assume that at the moment of defect nucleation, a shear occurs in one slip
system, the solid retains isotropy, and the elastic modulus of the damaged material is defined by the expression [6]

E =
2E0(1− c)(7− 5ν0)

2(7− 5ν0) + (1 + ν0)(13− 15ν0)c
,

where c is the defect concentration. The initial values of the damage parameter and the defect concentration are
found by calculating the volume of a conditional pore and the volume per one pore; then,

ω0 = l0N
−1/3, c0 = πl30N/6,

where N is the number of defects in 1 m3 and l0 is the size of the microdefect nucleation center determined by
microstructural studies. The initial and calculated defect characteristics and estimates of ki are listed in Table 1.
As is evident from the table, the obtained values of ki are negative, leading to a decrease in all elastic moduli during
defect formation with the order of magnitude dependent on the defect concentration and size.
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TABLE 1

Material l0, µm c0 ω0 k4, MPa k12, MPa k14, MPa

Aluminum 0.14 1.4 · 10−4 0.0650 −199.1 −49.8 −199.1
Copper 0.25 4.1 · 10−3 0.1984 −2060.5 −515.1 −2060.5
St. 3 0.10 5.2 · 10−7 0.0100 −9.2 −2.5 −8.4

VT-5 titanium alloy 3.00 5.0 · 10−3 0.0295 −23 700 −5900 −24 800
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Fig. 1. Destructive loading diagram for St. 3 samples (S is the true stress and ε is the permanent
strain): the points refer to experiments and the solid curves are an approximation.
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Fig. 2. Elastic modulus versus permanent strain for St. 3 samples.

Fig. 3. Transverse-strain coefficient versus permanent strain for St. 3 samples.

To determine the effect of anisotropy due to damage accumulation, we consider the behavior of Cij for the
deformation of St. 3 steel samples subjected to uniaxial tension with recording of longitudinal and transverse strains.

It is known that in plastically deformed metals, the moment of microdefect nucleation is characterized by
the destruction point D, which can be established by various methods [12, 13]. Figures 1–3 show a destructive
loading diagram, the variation in the elastic modulus ED during unloading, and the dependence of the coefficient ν

on plastic strain. As follows from Fig. 1, the moment of microdefect nucleation corresponds to a permanent strain
ε11 ≈ 0.07 and a modulus E11 ≈ 1.5 · 105 MPa. Then, to find the unknown coefficients Al and B1, we formulate
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Fig. 4. Stiffness-matrix components versus slip direction.

Fig. 5. Stiffness-matrix components versus applied stress.

the following system of equations using (9) and experimental data:
Cl

11 = C0
11 + (1/π)B1(e− e0)N l

11 + (1/π)ω0M
l
11,

C1
66 = C0

66 + (1/π)B1(e− e0)N1
66 + (1/π)ω0M

1
66.

(11)

To determine Cl
ij , we again employ formulas (4) under the assumption that the strain intensity is defined by the

relation
e = (2

√
2/3)(1 + ν + ν2)1/2ε11.

Solution of system (11) using (10) for the examined St. 3 steel sample and the indicated assumptions gives the
following estimates: A1 ≈ −16.6 · 105 MPa, A2 ≈ 24.5 · 105 MPa, A3 ≈ −26.1 · 105 MPa, A4 ≈ 24.1 · 105 MPa, and
B1 ≈ 5. From this, taking into account (7), we have k4 ≈ −9.2 ·105 MPa, k8 ≈ −34.9 ·105 MPa, k12 ≈ 2.9 ·105 MPa,
and k14 ≈ 50.7 · 105 MPa.

Unlike in the case of isotropy, the stiffness matrix is now characterized by two negative coefficients k4 and k8

and two positive coefficients k12 and k14, which indicates the opposite behavior of the elastic moduli. Figure 4 gives a
distribution of the values of Cij over the slip systems determined by the angle ϕ. Generally, with increase in damage,
the values of C11 decrease and those of C12 increase; in this case, C22 and C66 decrease to zero approximately two
times faster than C11. From the results it follows that on reaching a certain stress state that corresponds to the
angle ϕ1, the plastic deformation becomes unstable. In this case again, a local shear occurs in the plane λ = 0, and
in the planes where λ 6= 0, plastic shears do not occur. Ultimately, this leads to a decrease in the material strength
in the direction C11 and fragmentation of the material. The strain at which C11 vanishes corresponds to failure of
the sample.

Indeed, physical studies have shown that in materials similar to St. 3, plastic deformation occurs by shear
over the slip planes of individual ferrite grains in the direction of the major diagonal. The different orientation of
the grains and the presence of grain boundaries and inclusions hinder the general shear of one part of the sample
relative to the other. Therefore, for common shear planes to form in the sample, the shears in individual ferrite
grains should flow around stronger perlite grains or cleave their weak segments with increase in the stress. Figure 5
gives calculated and experimental curves of the elastic moduli versus stress. As is evident, the values of C11

determined theoretically and experimentally are close. The small difference is due to the adopted assumptions in
the conversion of the measured values of E11.

Thus, an estimate was obtained for the stiffness matrix component in the case of development of anisotropy
of the material. The crack orientation is shown to have a significant effect on the behavior of the elastic moduli.
The model proposed for the deformation and failure of elastoplastic materials adequately describes the process and
can be used as a basis for monitoring the damage level of a materials and for estimating its life.
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